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Connections are made between two valence bond studies of hydrogen atom abstraction reactions: (a)J.
Phys. Chem. A2001, 105, 8226 and (b)J. Phys. Chem.1993, 97, 12210; corrections1994, 98, 3226. At each
stage along the reaction coordinate, the variational-best valence bond formulation for the reacting system of
(b) can be described in terms of resonance between valence bond structures for a reactantlike complex and
a productlike complex. It is demonstrated that the (a) and (b) descriptions of the transition states are equivalent.
Further development for (b) is presented, to compare expressions for the promotion gap (G) and the resonance
energy at the avoided crossing (B) with those that arise in (a). By use of a triple-ú 1s atomic orbital (AO)
basis set to formulate the wave functions for the reactantlike and productlike complexes, it is demonstrated
how these wave functions are constructed as linear combinations of localized molecular orbital (MO)
configurations, each of which involves one AO per atomic center. Similar procedures that include 2p AOs as
polarization functions in the treatment are also described. The results of valence bond calculations that use
these two types of AO basis sets provide illustrative examples of how the formulation of (b) provides a
compact valence bond representation for the electronic reorganization that is involved in the conversion of
reactants into products.

Introduction

Shaik et al.1 have provided valence bond (VB) studies of
identity hydrogen atom transfer reactions of the type X• + H-X′
f X-H + X′•, with X ) X′ ) CH3, SiH3, GeH3, SnH3, and
PbH3. Attention was given to both quantitative estimates of
reaction parameters and the construction of state correlation
diagrams via the use of Lewis-type VB structures. After the
publication of ref 1, Shaik et al.2 contrasted their model with
the Z model of Zavitsas,3 to respond to a criticism that was
provided by Zavitsas.4 In ref 5, a different type of quantitative
VB study for H• + H-H′ f H-H + H′• was also presented.
Although ref 5 involved an extensive list of corrections, the
treatment provided is relevant for the provision of compact
qualitative VB representations for X• + H-X′ f X-H + X′•
radical transfer reactions. In particular, Scheme A of ref 5, or
more generallyI f [II T III ] f IV here6 with X ) R ) Y )
H, does indicate clearly how reactants are converted into
products via the formation of reactantlike (RC) and productlike
(PC) complexes. The VB structuresII andIII , with fractional
X-R and R-Y bonding, are examples of “increased-valence”
structures.5-8

In this paper, extensions to the treatment provided in ref 5
will be developed in order to demonstrate how extended atomic
orbital (AO) basis sets can be incorporated into this type of
VB formulation. With both triple-ú and 1s-2p basis sets used

to construct the wave functions for the reactantlike and
productlike complexes of the H• + H-H′ f H-H + H′•
reaction, it will be demonstrated, with illustrative calculations
for the transition state, how these wave functions can be
expressed as linear combinations of increased-valence configu-
rations, each of which involves one nonhybrid or hybrid AO
per atomic center. The purpose is to show how the theory for
I f [II T III ] f IV is appropriate for all types of AO basis
sets, rather than an attempt to provide fairly accurate values
for the transition-state barrier height and geometry via the
illustrative calculations, which use only small AO basis sets.

Initially in this paper, some comparisons will be made with
the theory that has been provided in ref 1.

Wave Functions for VB Structures

To establish the VB formulation, we redescribe the orbitals
and orbital occupancies for the mechanism ofI f [II T III ]
f IV . At intermediate stages along the reaction coordinate, the
electrons are accommodated in six (nonorthogonal) two-center
molecular orbitals (MOs)sthree for II and three for III .
Therefore the mechanism differs from a generalized VB (GVB)
formulation9 for the H• + H-D f H-H + D• reaction, in which
the electrons occupy three-center MOs at intermediate stages
along the reaction coordinate. Although the GVB formulation
could provide a more convenient algorithm for calculations, the
three-center nature of its orbitals does not provide a localized
“picture” of how electronic reorganization might proceed as
reactants are converted into products.At all stages ofI f [II
T III ] f IV , the orbitals that accommodate the electrons are
either AOs or localized two-center MOs. With configuration
interaction (CI), the GVB and theI f [II T III ] f IV
formulations can generate the same energy.

With a, b, and c as the overlapping (nonhybrid or hybrid)
AOs located on the atomic centers X, R, and Y, the orbital* E-mail r.harcourt@unimelb.edu.au; fax 61(3)93475180.
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occupancies for the X+ RY reactants ofI and the XR+ Y
products of IV are (a)1(φ′bc)1(φ′′cb)1 and (φ′ba)1(φ′′ba)1(c)1,
respectively, in whichφ′bc ) b + k′c, φ′′cb ) c + k′′b, φ′ba )
b + κ′a, andφ′′ab ) a + κ′′b are Coulson-Fischer10-type
bonding MOs; cf. eqs 3 and 4 of ref 5. As the reactants approach,
and the a and b AOs overlap, the X electron delocalizes into
the X-R bonding MO,φab ) a + lb, to give the orbital
occupancies of (φab)1(φ′bc)1(φ′′cb)1 for the reactantlike complex
II . Electronic reorganization ofII occurs via the delocalization
of an electron from an R-Y bonding MO into an X-R bonding
MO to generate the productlike complexIII with MO occupan-
cies of (φ′ba)1(φ′′ab)1(φcb)1 andφcb ) c + λb. Formation of the
product IV arises from the transfer of theφcb electron ofIII
into the c AO, to give the (φ′ba)1(φ′′ab)1(c)1 configuration. At
the commencement of the reaction,l ) 0, andλ ) 0 at the
conclusion of the reaction.

At each stage along the reaction coordinate, the values for
the MO polarity parametersk′, k′′, l, κ′, κ′′, andλ are determined
variationally. The wave function for the reacting system is given
by eq 1 (cf. eq 11 of ref 5)

in which the wave functions for the reactantlike and productlike
complexes are defined according to eqs 9 and 10 of ref 5, or

There are eightS ) MS ) 1/2 spin Lewis structures, with
different AO configurations. These structures are displayed in
both refs 1 and 5. We shall use the VB structural numberings11

of Figure 1 of ref 5. The AO occupancies are indicated here in
Table 1. We shall initially designate these structures asΦ1

instead ofΦHL(r;1) or ΦHL(p;1) for example. TheΦ′II , Φ′′II ,
Φ′III , andΦ′′III wave functions of eqs 5-8 of ref 5 are then
given by eqs 3-6 here:

in which a ) 1 + k′k′′, b ) 1 - k′k′′, u ) 1 + κ′κ′′, andV )
1 - κ′κ′′.

The ΨII and ΨIII of eq 1 and theΨ of eq 2 can then be
expressed according to eqs 7-11, in which CT ) charge
transfer,CCT(r) ) -l, andCCT(p) ) -λ:

The variationally best values for thedi coefficients of eq 12
can be used to determine the values of the six polarity
parameters andF when two further equations forµ andν are
included; see below. It is to be noted that when the variationally
bestdi coefficients are used to determine the coefficients ofΦi

in eqs 7 and 9, the latter coefficients will not correspond to the
variationally best values forΨII and ΨIII . Conversely, the
variationally best values for theΦi coefficients in eqs 7 and 9
do not correspond to the variationally best values for thedi

coefficients.
In eqs 8 and 10,Ψ′I(r) ≡ Φ′L(r) andΨ′IV (p) ≡ Φ′L(p), in

which the subscript L refers to the Lewis-type designation of
ref 1. Whenµ ) 0 in eqs 7 and 8, andν ) 0 in eqs 9 and 10,
the resulting VB structures that correspond to the identities of
eqs 8 and 10 are displayed below.

With nonzero values forµ and ν, structures4 and 1 need
also to be included in the resonance schemes, as indicated by
eqs 8 and 10.

Transition-State Wave Function

At the transition state for a symmetrical system, the param-
eters λ, κ′, κ′′, ν, and F are equal tol, k′, k′′, µ, and -1,

TABLE 1: Weights for H 3 VB Structures 1-8 for the H3 Transition State, with Triple- ú 1s Basis Seta

VB structure AO configuration
úa ) 1.0,

úb ) úc ) 1.193
úa ) úb ) 1.0,

úc ) 0.6875
úa ) úc ) 1.0,

úb ) 0.6875
úc ) úb ) 1.0,

úa ) 0.6875
úa ) úb ) 1.193,

úc ) 1.0
sum of
weights

1 a(bc) 0.179 0.004 0.003 0.002 0.001 0.189
2 a(bb) 0.066 0.011 0.009 0.001 0.053 0.140
3 a(cc) 0.009 0.018 0.116 0.143
4 c(ba) 0.001 0.002 0.003 0.004 0.179 0.189
5 c(bb) 0.053 0.001 0.009 0.011 0.066 0.140
6 c(aa) 0.116 0.018 0.009 0.143
7 b(cc) 0.008 0.008 0.010 0.026
8 b(aa) 0.010 0.008 0.008 0.026

a The AO exponentsúa, úb, andúc obtain to the AO configurations for the VB structures. The two electrons that occupy the AOs in parentheses
are singlet-spin paired. The remaining electron is assumed to havems ) +1/2 spin.

Ψ ) ΨRC + FΨPC ≡ ΨII + FΨIII (1)

ΨRC ≡ ΨII ) Φ′II + µΦ′′II (2a)

ΨPC ≡ ΨIII ) Φ′III + νΦ′′III (2b)

Φ′II ) aΦ1 + 2k′′Φ2 + 2k′Φ3 - l(aΦ5 - 2k′Φ7) (3)

Φ′′II ) b(-Φ1 + 2Φ4 - 3lΦ5) (4)

Φ′III ) uΦ4 + 2κ′′Φ5 + 2κ′Φ6 - λ(uΦ2 - 2κ′Φ8) (5)

Φ′′III ) V(2Φ1 - 3λΦ2 - Φ4) (6)

ΨII ) {(a - µb)Φ1 + 2k′′Φ2 + 2k′Φ3} +
2µbΦ4 - l(a + 3µb)Φ5 + 2lk′Φ7 (7)

) Φ′L(r) + 2µbΦ4 + CCT(r)Ψ{X+(RY)-}

ΨII ) Ψ′I(r) + 2µbΦ4 + CCT(r)ΨV (8)

ΨIII ) {(u - νV)Φ4 + 2κ′′Φ5 + 2κ′Φ6} +
2νVΦ1 - λ(u + 3νV)Φ2 + 2λκ′Φ8 (9)

) Φ′L(p) + 2νVΦ1 + CCT(p)Ψ{(XR)-Y+}

ΨIII ) Ψ′IV (p) + 2νVΦ1 + CCT(p)ΨVI (10)

Ψ ) (a - µb + 2FνV)Φ1 + {2k′′ - Fλ(u + 3νV)}Φ2 +
2k′Φ3 + {2µb + F(u - νV)}Φ4 + {-l(a + 3µb) +

2Fκ′′}Φ5 + 2Fκ′Φ6 + 2lk′Φ7 + 2Fλκ′Φ8 (11)

Ψ ≡ ∑di Φi i ) 1-8 (12)
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respectively.2 With these equalities, eq 13 is obtained from eq
11:

The Lewis-type wave functionsΦL(r) and ΦL(p) of eq 14
correspond toΨI- andΨIV -type wave functions for the reactants
and products.

TheΨTS of eq 14 is proportional to the Shaik et al. expression
of eq 15 (i.e., eq 9 of ref 1) forΨTS.

Therefore the two treatments of the transition state are
equivalent. A modified result is obtained whenΦ1, Φ2, Φ4,
andΦ5 in the ΨII of eq 7 are replaced byΦ1(r), Φ2(r), Φ4(r),
andΦ5(r), and the same wave functions in theΨIII of eq 9 are
replaced byΦ1(p), Φ2(p), Φ4(p), andΦ5(p). The corresponding
designations forΦ3, Φ6, Φ7, andΦ8 areΦ3(r), Φ6(p), Φ7(r),
andΦ8(p). The resulting expression forΨTS is then given by

in which theΦL(r) andΦL(p) are now defined in terms of the
Φi(r) andΦi(p) structures, respectively.

The Promotion Gap, G

Assuming that theΦi(r) andΦi(p) are identical, i.e., the same
AOs are used to construct them to giveΦi(r) ) Φi(p) ≡ Φi, in
this section and the next, we shall demonstrate that the
definitions of the promotion gap,G, and the resonance energy
of the transition state,B, differ in the refs 1- and 5-type
treatments of them. The theory for H3 will be used to illustrate
the differences.

In refs 5 and 6, it is shown that one VB representation for
the dissociation of the R-Y bond of the reactant complexII
generates the XR+ Y products ofVII .

Similarly, one VB representation for the dissociation of the
X-R bond of the product complexIII generates the X+ RY
reactants ofVIII .

WhenΨII ) Φ′II andΨIII ) Φ′III , the polarity parameters
l andλ for VII andVIII have nonzero values when they are
determined variationally.5 But the resultant wave functions for

VII andVIII are then not orthogonal to the ground-state wave
functions for the separated products or reactants,5 and therefore
they do not correspond to spectroscopic (excited) states.

When nonzero values for the parametersµ andν are included
in eq 2, their values can be chosen so that the orthogonality
requirements of eq 18

together with variationally determined energies, can be ob-
tained.5 We reconsider〈ΨII (RBC)∞)|ΨIV (RBC)∞)〉 ) 0 here.
WhenRBC ) ∞, k′ andk′′ have values of zero, and eq 6 then
generates eq 19 (cf. eq 20 of ref 5):

In the Appendix, and in ref 5, it is demonstrated thatµ ) 0.2,
and thereforel ) 0 (cf. eq 22 of ref 5), generating eq 20 (cf. eq
26 of ref 5) forΨII (RBC)∞):

Equation 20 involves spectroscopic spin states for H2 and the
H atom. Withl ) 0, the VB representations forII f VII and
III f VIII can then be modified as follows, in order that
spectroscopic excited states are generated for the relevant bond
dissociations.

The resulting promotion gapG corresponds to theG′ ) ∆EST

of eq 15 of ref 1 and represents the energy difference between
the singlet-spin ground state and the triplet-spin excited state
for H2. As was done in ref 1,G can be related to the bond
energy for the R-Y bond.

Resonance EnergyB at the Avoided Crossing

The results of the H3 VB calculations12 reported in Table 4
of ref 5 show thatG is approximately related toE(Ψ* cross) -
E(Ψcross) according to

in which E(Ψcross) ≡ E(ΨTS).
With normalized ΨII and ΨIII , we have 〈ΨII |H|ΨII 〉 )

〈ΨIII |H|ΨIII 〉 ) Q at the crossing point,K ) 〈ΨII |H|ΨIII 〉 ≡
〈ΨIII |H|ΨII 〉, andSII ,III ) 〈ΨII |ΨIII 〉. When the approximation
of eq 21 is invoked, eqs 22 and 23 are obtained forE(Ψ* cross)
- E(Ψcross) andB:

ΨTS ) [(a - 3µb)Φ1 + {2k′′ - l(a + 3µb)}Φ2 +
2k′Φ3 ] - [(a - 3µb)Φ4 + {2k′′ - l(a + 3µb)}Φ5 +

2k′Φ6] + 2lk′(Φ7 - Φ8) (13)

ΨTS ) ΦL(r) - ΦL(p) + 2lk′(Φ7 - Φ8) (14)

ΨTS ) cLN{ΦL(r) - ΦL(p)} + cF(Φ7 - Φ8) (15)

ΨTS ) {(a - µb)Φ1(r) + 2k′′Φ2(r) + 2k′Φ3(r)} -
{(a - µb)Φ4(p) + 2k′′Φ5(p) + 2k′Φ6(p)} + {2µbΦ4(r) -

l(a + 3µb)Φ5(r)} - {2µbΦ1(p) - l(a + 3µb)Φ2(p)} +
2lk′{Φ7(r) - Φ8(p)} (16)

ΨTS ) ΦL(r) - ΦL(p) + {2µbΦ4(r) - l(a + 3µb)Φ5(r)} -
{2µbΦ1(p) - l(a + 3µb)Φ2(p)} + 2lk′′{Φ7(r) - Φ8(p)}

(17)

〈ΨII (RBC)∞)|ΨIV (RBC)∞)〉 )
〈ΨIII (RAB)∞)|ΨI(RAB)∞)〉 ) 0 (18)

ΨII (RBC)∞) ) (1 - µ)Φ1 + 2µΦ4 - l(1 + 3µ)Φ5 (19)

ΨII (RBC)∞) ) Ψ{HA-HB(S)1)} + HC(S)1/2) (20)

G ) E{ΨII (RBC)∞)} - E{ΨIV (RBC)∞)} ≈
2{E(Ψ* cross) - E(Ψcross)} (21)

E(Ψ* cross) - E(Ψcross) ) -2(K - SII ,III Q)/(1 - SII ,III
2) ≈

G/2 (22)

B ) E(ΨTS) - E(ΨII ,cross) ) (K - SII ,III Q)/(1 + SII ,III ) ≈
-(1 - SII ,III )G/4 (23)

10326 J. Phys. Chem. A, Vol. 107, No. 48, 2003 Harcourt



In ref 1,B is defined asB ) E(ΨTS) - E(ΦL,cross), and a value
of G′/4 has been assigned to it from semiempirical VB theory.

Simplifications to B and G

We can simplify eqs 22 and 23 as follows. We have indicated
that, at the conclusion and commencement of the reaction, the
orthogonality relationships of eq 18 obtain in order that the
associated wave functions represent spectroscopic states, or
eigenstates, for the reactants and products. At intermediate stages
along the reaction coordinate, each ofΨII andΨIII alone does
not correspond to an eigenstate. But we can still require that
these wave functions be orthogonal, i.e.,SII ,III ) 0. This
requirement ensures thatΨII and ΨIII correlate simply with
ΨII (RBC)∞) andΨIII (RAB)∞), respectively. We thereby obtain
eqs 24 and 25.

We now deduce anapproximatecondition for orthogonality
of ΨII andΨIII at the avoided crossing, for whichκ′ ) k′, κ′′
) k′′, λ ) l, and ν ) µ in eqs 2-6. The following
approximations will initially be introduced: (a) All two-center
AO overlap integrals (Sab ) Sbc andSac) will be omitted from
the canonical structure overlap integrals,Sij ) 〈Φi|Φj〉. As a
consequence, it can be deduced thatSij ) 0 except forS11 )
S44 ≈ 2; S14 ≈ -1, andS22 ) S55 ≈ 1. (b) The productk′k′′ is
set equal to zero. The resulting expression for〈ΨII |ΨII I〉 ) 0 is
then given by eq 26.

When the values ofk′′, l, andµ are assumed to be small, eq 27

is obtained as the approximate requirement forΨII andΨIII to
be orthogonal. For illustrative purposes here, we shall ap-
proximate13 further the value ofµ to 0.1. When this value ofµ
is introduced into eq 13, values ofk′ ) 0.16, k′′ ) 0.33, and l
) 0.712 are obtained. (The approximations of neglectingk′k′′
and µ2 can therefore be seen to be reasonable.) BecauseΨII

andΨIII were not required to be orthogonal in ref 5,these values
for k′ andk′′ differ from those reported in ref 5, namely,k′ )
k′′ ) 0.143. Withµ ) 0.1 for SII ,III ) 0, andF ) +1 in eq 11,
we obtaink′ ) 0.22, k′′ ) 0.23, and l ) 0.555 for Ψ* cross.

Triple- ú 1s AO Basis Set

For l * 0 in eqs 3 and 4, the charge-transfer structures5
and7 contribute to the reactantlike complex with wave function
ΨII . Similarly for λ * 0 in eqs 5 and 6, the charge-transfer
structures2 and8 contribute to the productlike complex with
wave functionΨIII . The single-ú 1s AO exponent for the (free)
H- ions of these structures is 0.6875, which differs substantially
from the values of 1.0 and 1.193 for the free H-atom and
(Weinbaum)14 H2 1s exponents, respectively. To take account
of each of these exponents in the construction of wave functions
for VB structures II and III , we have performed further
calculations, which use the canonical Lewis structures that

contribute to the following wave functions:

The numbers in parentheses refer to the exponents that have
been used for the a, b, and c AOs. Each of theΨII ,i andΨIII ,i

is constructed according to eq 2. There are 32 H3-type canonical
Lewis structures of the types1-8 of Figure 1 of ref 5, or Table
1 here, which contribute to theΨRC andΨPC of eqs 28 and 29.
By use of these structures and Roso’s ab initio VB program,15

variational-best calculations were performed for the transition
state and the H+ H2 dissociation products. The energies and
bond lengths areE ) -1.618 40 au andRab ) Rbc ) 1.839 au
for the transition state, andE ) -1.648 28 au andRbc ) 1.431
au for H + H2. The resulting barrier height is 17.4 kcal/mol,
cf. 23.6 kcal/mol,5 15.1 kcal/mol (double-ú + p basis),16a and
9.6 kcal/mol (exact).16b,c

Inspection of Table 1 reveals thatΨII ,1 - ΨIII ,1 is the primary
contributor toΨRC - ΨPC. Twelve canonical Lewis structures
(Table 1) contribute to it. Resonance between these structures
generates a minimum energy of-1.611 85 au withRab ) Rbc

) 1.842 au. WhenRab ) Rbc ) 1.839 au, as occurs for the 32
structure calculation, the energy is-1.611 84 au, cf.-1.618 40
au for the 32 structure resonance. However each ofΨII ,2 -
ΨIII ,2 andΨII ,3 - ΨIII ,3 is dissociative. ForRab ) Rbc ) 1.839
au, their energies are-1.543 58 and-1.490 77 au, respectively.

When Rab ) Rbc ) 1.839 au, the reactant-complex wave
function, ΨII ,1 has a minimum energy of-1.589 83 au with
ΨII ,1 ) 0.31654Φ1 + 0.15928Φ2 + 0.08785Φ3 - 0.29221Φ4

- 0.03676Φ5 + 0.07404Φ7. When l is set equal toc7/c3 )
0.843, as in eq 7 for the increased-valence configuration (a+
lb)1(b + k′c)1(c + k′′b)1, this configuration has a minimum
energy of-1.543 82 au fork′ ) 0.15, k′′ ) 0.30, andµ )
-0.0053.

Additional variational parameters can be introduced by use
of a linear combination of increased-valence configurations, such
as

for which the{}′ and{}′′ groupings represent the spin-pairings
of eqs 3 and 4.

With l ) 0.843,k′ ) 0.15, andk′′ ) 0.30, it is calculated
that the reactant increased-valence energy is lowered to-1.589 83
au when the fiveΦ′II ,1 configurations andany one of the five
Φ′′II ,1 configurations are used to construct theΨII ,1 of eq 30.
With anyset of nonequivalentl, k′, andk′′ values, for example,
l ) 0.4, k′ ) 0.2, andk′′ ) 0.3, the same energy,-1.589 83
au, is obtained. The variational mixing is transferred from the
polarity parametersl, k′, andk′′ to the coefficients of the five
Φ′II ,1 and the Φ′′II ,1 increased-valence configurations (cf.
complete MO-CI treatments with orthogonal MOs). Therefore,
resonance between the associated increased-valence structures,

E(Ψ* cross) - E(Ψcross) ) -2K ) G/2 (24)

B ) E(ΨTS) - E(ΨRC,cross) ) K ) -G/4 (25)

〈ΨII |ΨIII 〉 ) 2µ(1 - µ)(S11 + S44) +

2k′′l(1 - 3µ)(S22 + S55) + {(1 - µ)2 + µ2}S14

≡ 8µ(1 - µ) + 4k′′l(1 - 3µ) - {(1 - µ)2 + µ2}
) 0 (26)

µ ≈ 0.1(1- 2.8k′′l) (27)

ΨRC ) CII ,1ΨII ,1(1.0,1.193,1.193)+
CII ,2ΨII ,2(1.0,0.6875,1.0)+ CII ,3ΨII ,3(1.0,1.0,0.6875) (28)

ΨPC ) CIII ,1ΨIII ,1(1.193,1.193,1.0)+
CIII ,2ΨIII ,2(1.0,6875,1.0)+ CIII ,3ΨIII ,3(0.6875,1.0,1.0) (29)

ΨII ,1 ) {(a + lb)1(b + k′c)1(c + k′′b)1}′ +

C1{(a + lb)1(b + k′c)1(c + k′′b)1}′′ +

C2{(a + k′b)1(b + lc)1(c + k′′b)1}′ +

C3{(a + k′′b)1(b + k′c)1(c + lb)1}′ +

C4{(a + lb)1(b + k′c)1(c + k′b)1}′ +

C5{(a + lb)1(b + k′′c)1(c + k′′b)1}′ (30)
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each of which involves three bonding localized MOs (LMOs)
is equivalent to the lowest-energy resonance between the Lewis
structures that contribute to the increased-valence structures. If
theΦ′′II ,1 configuration is omitted, the resultingΨII ,1 with the
five Φ′II ,1 configurations gives an energy of-1.562 21 au,
which is equivalent to the best linear combination of theΦ1,
Φ2, Φ3, Φ5, andΦ7 Lewis AO configurations that contribute
to theΦ′II ,1 of eq 3.

The same type of result is obtained forΨII ,1 - ΨIII ,1, with
ΨIII ,1 given by eq 31 andΨII ,1 - ΨIII ,1 calculated as either eq
32 or 33 in which the numerical coefficients are now those for
normalized AO or LMO configuration wave functions.

For both cases, the calculated energy is-1.611 84 au.
Eighteen increased-valence configurations with 27 distinct

LMOs contribute to theΨRC of eq 28. Withl ) 0.843,k′ )
0.15, and k′′ ) 0.30 as previously, the resulting energy,
-1.608 17 au, is the same as that calculated for the best linear
combination of the 18 component AO configurations (cf. Table
1).

Inclusion of 2p AOs as Polarization Functions

There are two (nonequivalent) ways to include polarization
functions such as 2p AOs in the above treatment:

(a) To formulate the a, b, and c AOs as hybrid AOs, such as
a ) 1sa + ka2pσa, b ) 1sb + kb2pσb, and c) 1sc + kc2pσc,
with the hybridization parameterska, kb, and kc determined
variationally at each stage along the reaction coordinate.17 The
theory is then identical to that which has already been described.

To provide a simple example, we have assumed that, for the
reactant complex wave functionΨII ,1, ka ) 0, ú(1sa) ) 1.0 and
that the 1s and 2p AO exponents for the b and c AOs are each
equal to 1.193 (cf. the Rosen calculation for H2).18 Variationally
best estimates of-0.08 and-0.01 are obtained forkb andkc at
Rab ) Rbc ) 1.839 au, to give the linear combination

for ΨII ,1 with an energy of-1.581 89 au. With a) 1sa, b )
1sb - 0.08(2pσb), c ) 1sc - 0.01(2pσc), l ) 0.843,k′ ) 0.15,
and k′′ ) 0.30 as previously (for which the 2pσ AOs were
omitted), theΨII ,1 of eq 35 is also calculated to give an energy
of -1.581 89 au:

(b) To formulate wave functions according to

which are analogous to eqs 28 and 29. The (1sa, 1sb, 1sc)RC and
(1sa, 1sb, 1sc)PC sets of exponents are (1.0, 1.193, 1.193) and
(1.193, 1.193, 1.0), respectively. Each 2pσ AO exponent is equal
to 1.193. However, three-electron configurations, which include
(1sc, 2pσc) for ΨRC, (1sa, 2pσa) for ΨPC, and (1sb, 2pσb), (1sb,
1sb, 2pσb), and (1sb, 2pσb, 2pσb) for each ofΨRC andΨPC, need
to be added to eqs 36 and 37. For theΨRC andΨPC increased-
valence configurations, the AOs are a) 1sa, b ) 1sb or 2pσb,
c ) 1sc or 2pσc, and a) 1sa or 2pσa, b ) 1sb or 2pσb, c ) 1sc,
respectively.

Conclusions

For any AO basis set, the VB formulation presented in ref 5
for radical transfer reactions and in earlier publications6,7 (as in
I f [II T III ] f IV here) can generate diabatic potential energy
curves via those for the reactantlike and productlike complexes
(cf. Figure 2 of ref 5). The formulation provides a compact VB
representation that indicates succinctly how electronic reorga-
nization could occur as the reaction proceeds. It also allows for
the possibility of using orthogonal forms of the wave functions
for the reactantlike and productlike complexes to provide a
simple definition of the resonance energy at the crossing point.
Other developments are possible,19 but that presented here
should be sufficient to show how extended AO basis sets can
be incorporated into theI f [II T III ] f IV VB formulation,
and to make some comparison between the theory of refs 1
and 5.

It is noted that the reactantlike complexII involves some
productlike character, via the inclusion of the product Lewis
structures4 and5 in the equivalent Lewis structure resonance
scheme. Similarly, the productlike complexIII involves some
reactantlike character via its inclusion of the reactant Lewis
structures1 and2.

VB modeling of barriers in the nonidentity hydrogen abstrac-
tion reactions has been described recently in ref 20. The compact

ΨIII ,1 ) {(c + lb)1(b + k′a)1(a + k′′b)1}′ +

C1{(c + lb)1(b + k′a)1(a + k′′b)1}′′ +

C2{(c + k′b)1(b + la)1(a + k′′b)1}′ +

C3{(c + k′′b)1(b + k′a)1(a + lb)1}′ +

C4{(c + lb)1(b + k′a)1(a + k′b)1} +

C5{(c + lb)1(b + k′′a)1(a + k′′b)1} (31)

ΨII ,1 - ΨIII ,1 ) 0.22072{Φ1,1(r) - Φ4,1(p)} +
0.39834{Φ2,1(r) - Φ5,1(p)} + 0.08219{Φ3,1(r) -

Φ6,1(p)} - 0.19428{Φ4,1(r) - Φ1,1(p)} +
0.31570{Φ5,1(r) - Φ2,1(p)} + 0.05987{Φ7,1(r) - Φ8,1(p)}

(32)

ΨII ,1 - ΨIII ,1 ) {(a + lb)1(b + k′c)1(c + k′′b)1 -

(c + lb)1(b + k′a)1(a + k′′b)1}′ - 0.03100{(a + lb)1 ×
(b + k′c)1(c + k′′b)1 - (c + lb)1(b + k′a)1(a + k′′b)1}′′ +

0.03961{(c + k′b)1(b + la)1(a + k′′b)1 - (a + k′b)1 ×
(b + lc)1(c + k′′b)1}′ - 0.23949{(a + k′′b)1(b + k′c)1 ×

(c + lb)1 - (c + k′′b)1(b + k′a)1(a + lb)1}′ - 0.72122{(a +
lb)1(b + k′c)1(c + k′b)1 - (c + lb)1(b + k′a)1(a + k′b)1}′ -

0.12443{(a + lb)1(b + k′′c)1(c + k′′b)1 - (c + lb)1(b +
k′′a)1(a + k′′b)1}′ (33)

ΨII ,1 ) 0.30335Φ1 + 0.15291Φ2 + 0.11969Φ3 -
0.03849Φ4 - 0.07615Φ5 + 0.29911Φ7 (34)

ΨII ,1 ) {(a + lb)1(b + k′c)1(c + k′′b)1}′ -

0.71459{(a + lb)1(b + k′c)1(c + k′′b)1}′′ +
0.02437{(a + k′b)1(b + lc)1(c + k′′b)1}′ -
0.19747{(a + k′′b)1(b + k′c)1(c + lb)1}′ -
0.02188{(a + lb)1(b + k′c)1(c + k′b)1}′ -

0.11879{(a + lb)1(b + k′′c)1(c + k′′b)1}′ (35)

ΨRC ) CII ,1ΨII ,1(1sa,1sb,1sc)RC +
CII ,2ΨII ,2(1sa,2pσb,1sc)RC + CII ,3ΨII ,3(1sa,1sb,2pσc)RC +

CII ,4ΨII ,4(1sa,2pσb,2pσc)RC (36)

ΨPC ) CIII ,1ΨIII ,1(1sa,1sb,1sc)PC +
CIII ,2ΨIII ,2(1sa,2pσb,1sc)PC + CIII ,3ΨIII ,3(2pσa,1sb,1sc)PC +

CIII ,4ΨIII ,4(2pσa,2pσb,1sc)PC (37)
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VB representation5-7 of I f [II T III ] f IV is also relevant
for these types of reactions. However, at the transition state,
for which the energies for nonequivalentII and III are equal,
the variational parameters for the reactant complexII must differ
from those for the product complexIII .
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Appendix

Although eq 20 forΨII (RBC)∞) represents an overall (S, MS)
spin state withS) MS ) 0.5, it involves mixed spin states for
the HA-HB product of HA-HB + HC. To obtain a spectroscopic
state (with a definite total spin quantum number,S), the S )
MS ) 0.5 wave functions forΦ1, Φ4, and Φ5 (cf. ref 2) are
expressed in terms of the spin states of their HA-HB compo-
nents. TheΨII (RBC)∞) is then given by eq A1.

Whenµ ) 0.2, orthogonality ofΨII (RBC)∞) with ΨIV (RBC)∞)
givesl ) 0.0 via eq 22 of ref 2. Therefore eq A1 reduces to eq
A2,

which corresponds to eq 20 for HA-HB(S)1) + HC, or eq 26
of ref 2.

Whenµ ) 1.0, the HA-HB(S)0) wave function of eq A3 is
obtained from eq A2:

Although l in eq A3 can be chosen so thatΨII (RBC)∞)
is orthogonal toΨIV (RBC)∞), eq A3 excludesΦ6(0,0), which
interacts with each ofΦ4(0,0) and Φ5(0,0). Therefore
ΨII (RBC)∞) represents a nonspectroscopicS) 0 valence state.

Note Added in Proof

For a symmetrical transition state with a) 1s, b) 2pσ, and
c ) 1s, the parametersκ′, κ′′, andλ are equal to the parameters
-k′, -k′′, and-l, respectively.
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