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Valence Bond Formulations of the ldentity Hydrogen Abstraction Reaction, X + H—X' —
X—H + X', with Reactantlike and Productlike Complexes

Richard D. Harcourt*
School of Chemistry, Upérsity of Melbourne, Victoria 3010, Australia

Receied: December 30, 2002

Connections are made between two valence bond studies of hydrogen atom abstraction reactidns: (a)
Phys. Chem. 2001, 105, 8226 and (bY. Phys. Chenil993 97, 12210; correction§994 98, 3226. At each

stage along the reaction coordinate, the variational-best valence bond formulation for the reacting system of
(b) can be described in terms of resonance between valence bond structures for a reactantlike complex and
a productlike complex. It is demonstrated that the (a) and (b) descriptions of the transition states are equivalent.
Further development for (b) is presented, to compare expressions for the promoti@) gap the resonance
energy at the avoided crossinB) (with those that arise in (a). By use of a trigiets atomic orbital (AO)

basis set to formulate the wave functions for the reactantlike and productlike complexes, it is demonstrated
how these wave functions are constructed as linear combinations of localized molecular orbital (MO)
configurations, each of which involves one AO per atomic center. Similar procedures that include 2p AOs as
polarization functions in the treatment are also described. The results of valence bond calculations that use
these two types of AO basis sets provide illustrative examples of how the formulation of (b) provides a
compact valence bond representation for the electronic reorganization that is involved in the conversion of
reactants into products.

Introduction to construct the wave functions for the reactantlike and
f productlike complexes of the *H+ H-H — H—-H + H"
reaction, it will be demonstrated, with illustrative calculations
for the transition state, how these wave functions can be
expressed as linear combinations of increased-valence configu-
rations, each of which involves one nonhybrid or hybrid AO
per atomic center. The purpose is to show how the theory for
| —[Il < Ill']— IV is appropriate for all types of AO basis
sets, rather than an attempt to provide fairly accurate values
for the transition-state barrier height and geometry via the
illustrative calculations, which use only small AO basis sets.

Initially in this paper, some comparisons will be made with
the theory that has been provided in ref 1.

Shaik et al have provided valence bond (VB) studies o
identity hydrogen atom transfer reactions of the type-H—X'
— X—H + X', with X = X" = CHg, SiHs, GeH;, SnH;, and
PbHs. Attention was given to both quantitative estimates of
reaction parameters and the construction of state correlation
diagrams via the use of Lewis-type VB structures. After the
publication of ref 1, Shaik et &lcontrasted their model with
the Z model of Zavitsa%,to respond to a criticism that was
provided by Zavitsa&.n ref 5, a different type of quantitative
VB study for H + H—H' — H—H + H'* was also presented.
Although ref 5 involved an extensive list of corrections, the
treatment provided is relevant for the provision of compact
qualitative VB representations forX H—X' — X—H + X' Wave Functions for VB Structures
radical transfer reactions. In particular, Scheme A of ref 5, or
more generally —[Il <1l ]— IV heréwith X =R=Y =
H, does indicate clearly how reactants are converted into
products via the formation of reactantlike (RC) and productlike
(PC) complexes. The VB structurdsandlll , with fractional
X—R and R-Y bonding, are examples of “increased-valence”
structures$8

To establish the VB formulation, we redescribe the orbitals
and orbital occupancies for the mechanism ef [Il < 11l ]
— IV. At intermediate stages along the reaction coordinate, the
electrons are accommodated in six (nonorthogonal) two-center
molecular orbitals (MOs)three for Il and three forlll .
Therefore the mechanism differs from a generalized VB (GVB)
formulatior? for the H + H—D — H—H + D reaction, in which
f\ the electrons occupy three-center MOs at intermediate stages
xq R:Y—»[X R : Yy==(X : R q)] along the reaction coordinate. Although the GVB formulation
1 1 m could provide a more convenient algorithm for calculations, the
. three-center nature of its orbitals does not provide a localized
X R o+ Y “picture” of how electronic reorganization might proceed as
reactants are converted into products.At all stages-of [lI
In this paper, extensions to the treatment provided in ref 5 <> Ill ] — IV, the orbitals that accommodate the electrons are
will be developed in order to demonstrate how extended atomic €ither AOs or localized two-center MOs. With configuration
orbital (AO) basis sets can be incorporated into this type of interaction (Cl), the GVB and thé — [l < IlI] — IV

VB formulation. With both triple and 1s-2p basis sets used formulations can generate the same energy.
With a, b, and c as the overlapping (nonhybrid or hybrid)
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TABLE 1: Weights for H 3 VB Structures 1—8 for the H3 Transition State, with Triple-§ 1s Basis Set

.= 1.0, £a=C,=1.0, &=(=10, &=6=10, (2= =1.193, sumof
VB structure  AO configuration &= .= 1.193 £.=0.6875 C,=0.6875 .= 0.6875 ..=1.0 weights
1 a(bc) 0.179 0.004 0.003 0.002 0.001 0.189
2 a(bb) 0.066 0.011 0.009 0.001 0.053 0.140
3 a(cc) 0.009 0.018 0.116 0.143
4 c(ba) 0.001 0.002 0.003 0.004 0.179 0.189
5 c(bb) 0.053 0.001 0.009 0.011 0.066 0.140
6 c(aa) 0.116 0.018 0.009 0.143
7 b(cc) 0.008 0.008 0.010 0.026
8 b(aa) 0.010 0.008 0.008 0.026

aThe AO exponent§,, Cp, and(. obtain to the AO configurations for the VB structures. The two electrons that occupy the AOs in parentheses
are singlet-spin paired. The remaining electron is assumed torhawe+/, spin.

occupancies for the X RY reactants ol and the XR+ Y
products of IV are (a}(¢'b)'(¢"c)* and @'bd'(¢"'ba (C)%,
respectively, in whichy'nc = b + K¢, ¢"'cp = ¢ + K'b, ¢'ba =
b + «'a, and¢'ap = a + «''b are CoulsorFischet’-type

bonding MOs; cf. egs 3 and 4 of ref 5. As the reactants approach,
and the a and b AOs overlap, the X electron delocalizes into

the X—R bonding MO, ¢ap = a + Ib, to give the orbital
occupancies ofgan) (¢ b)) (¢ o)t for the reactantlike complex
II'. Electronic reorganization dof occurs via the delocalization
of an electron from an RY bonding MO into an X-R bonding
MO to generate the productlike complgk with MO occupan-
cies of @'bd (9" a0 (¢en)! andgep = ¢ + Ab. Formation of the
productlV arises from the transfer of thg, electron oflll
into the ¢ AO, to give thedvs) (9" an)(c)! configuration. At
the commencement of the reactidrs= 0, andA = 0 at the
conclusion of the reaction.

At each stage along the reaction coordinate, the values for

the MO polarity parametets, k", |, «', "', and/ are determined
variationally. The wave function for the reacting system is given
by eq 1 (cf. eq 11 of ref 5)

W=Wpct pWoc=Y, +p¥, (1)

in which the wave functions for the reactantlike and productlike

Y, ={(a—ub)®,+ 2k'®, + 2K D} +
2ub®, — I(a+ 3ub)®. + 2Ik' D, (7)
= @' () + 2ub®, + C(NP{X(RY)}
W, =W () + 2ub®, + C(N¥, (8)
W, = {(U— ) D, + 2" Dy + 2D} +
2vv®@, — A(u + )P, + 24k Dy (9)
= @' (p) + 2v0®, + Cer(P)P{(XR) Y}
Y, =¥+ 2vo®, + Cor(p)Py, (10)

W= (a—ub+ 20vv)®, + {2k" — pA(u+ 3vv)} D, +
2K D, + {2ub + p(u — vv)} D, + {—I(a+ 3ub) +
20x"} g + 206" D + 2K’ P, + 204k’ Dy (11)

W=75d o, i=1-8 (12)

The variationally best values for the coefficients of eq 12
can be used to determine the values of the six polarity
parameters and when two further equations far andv are

complexes are defined according to eqs 9 and 10 of ref 5, orincluded; see below. It is to be noted that when the variationally

Wec=Y¥, =P +ud”, (29)

Woc= Wy =@ +r@", (2b)
There are eigh = Ms = 1/, spin Lewis structures, with
different AO configurations. These structures are displayed in
both refs 1 and 5. We shall use the VB structural numbetings
of Figure 1 of ref 5. The AO occupancies are indicated here in

Table 1. We shall initially designate these structuresbas
instead of®y (r;1) or @y (p;1) for example. Thed',, ®",
@'y, and @'y wave functions of eqs-58 of ref 5 are then

given by egs 36 here:

D', = ad, + 2K'D, + 2k D, — I(ad; — 2KD,)  (3)

D", = b(—D, + 20, — 3AD,) (4)
@', = UD,+ 2" Dy + 2 Dy — Aud, — 2¢'Dy) (5)
D", = 12D, — 31D, — D) (6)

inwhicha=14+KK',b=1-Kk',u=1+ «'«", andv =
1— «'«".

The W, and W, of eq 1 and thé¥ of eq 2 can then be
expressed according to eqs-¥1, in which CT = charge
transfer,Ccr(r) = —I, andCer(p) = —A:

bestd; coefficients are used to determine the coefficientdpf

in eqs 7 and 9, the latter coefficients will not correspond to the
variationally best values fok, and W),. Conversely, the
variationally best values for th@; coefficients in eqs 7 and 9
do not correspond to the variationally best values for dhe
coefficients.

In egs 8 and 10W'(r) = @' (r) and W'y (p) = @'L(p), in
which the subscript L refers to the Lewis-type designation of
ref 1. Whenu = 0in egs 7 and 8, and = 0 in egs 9 and 10,
the resulting VB structures that correspond to the identities of
egs 8 and 10 are displayed below.

)

X "R:Y=X R:IY=-=X9 R -Y
II, RC L L(r) Vv, CT(r)

X R -Y =X:R Y«»)‘(QR Y®
III, PC IV, L(p) VI, CT(p)

in which

R*Y=R Y==R ¥YadX- R =X R=-X R

With nonzero values for and v, structures4 and 1 need
also to be included in the resonance schemes, as indicated by
egs 8 and 10.

Transition-State Wave Function

At the transition state for a symmetrical system, the param-
etersi, «', ", v, and p are equal tol, K, K’, u, and —1,



10326 J. Phys. Chem. A, Vol. 107, No. 48, 2003

respectively? With these equalities, eq 13 is obtained from eq
11:

Y.o=[(a— 3ub)®, + {2k’ — I(a+ 3ub)} P, +
2&kd;] — [(a— 3ub)d, + {2k — I(a+ 3ub)} s+
2k Dy + 2Ik' (P, — Pg) (13)
Wrs= D (1) — D (p) + 2K (D, — Dy (14)
The Lewis-type wave function®| (r) and & (p) of eq 14
correspond téP,- andWy -type wave functions for the reactants
and products.
TheW+sof eq 14 is proportional to the Shaik et al. expression
of eq 15 (i.e., eq 9 of ref 1) foWrs.
Wis= o N{® (1) = D (p)} + C(P; — Pg)  (15)
Therefore the two treatments of the transition state are
equivalent. A modified result is obtained whdm, ®,, Py,
and®s in the W), of eq 7 are replaced b$4(r), ®a(r), D4(r),
and®s(r), and the same wave functions in th&, of eq 9 are
replaced byd1(p), @2(p), P4(p), andds(p). The corresponding
designations fokbs, @, @7, and ®g are @5(r), Pe(p), P(r),
and ®g(p). The resulting expression f&¥ts is then given by

W= {(a— ub)d,(1) + 2K' (1) + 2K D)} —
{(@— ub)®,(p) + 2K Dy(p) + 2K PP} + { 2ubD,(r) —
I(@+ 3ub)®o(n)} — {2ubP,(p) — I(@+ 3ub) ()} +

2K {D,(r) — D(p)} (16)

Wrs= @ (1) — @ (p) + {2ubP,(r) — I(a+ 3ub)Ps(r)} —

{2ub®,(p) — I(a + 3ub)®,(p)} + 2lk"{P(r) — Dg(p)}
(17)

in which the® (r) and ®_(p) are now defined in terms of the
@i(r) and ®@i(p) structures, respectively.

The Promotion Gap, G

Assuming that the&bi(r) and®;(p) are identical, i.e., the same
AOs are used to construct them to gigr) = ®i(p) = d;, in
this section and the next, we shall demonstrate that the
definitions of the promotion gaff;, and the resonance energy
of the transition stateB, differ in the refs 1- and 5-type
treatments of them. The theory fogMill be used to illustrate
the differences.

In refs 5 and 6, it is shown that one VB representation for
the dissociation of the RY bond of the reactant complex
generates the XR- Y products ofVII .

)
X R (Y —= X -
1L, RC

R Y

Vil

+

Similarly, one VB representation for the dissociation of the
X—R bond of the product compldX generates the ¥ RY
reactants owIll .

LR -y

111, PC

R
VI

- X+

Y

WhenW¥, = &', and¥,, = @'y, the polarity parameters
| andA for VII andVIIl have nonzero values when they are
determined variationall§ But the resultant wave functions for

Harcourt

VII andVIIlI are then not orthogonal to the ground-state wave

functions for the separated products or reactaatsj therefore

they do not correspond to spectroscopic (excited) states.
When nonzero values for the parameteendv are included

in eq 2, their values can be chosen so that the orthogonality

requirements of eq 18

W) (Rgc=20) | Wy, (Rgc=0) =
(W) (Rag=2)|W¥|(Ryg=00) = 0 (18)

together with variationally determined energies, can be ob-
tained® We reconsidefW), (Rsc=)| ¥y (Rec=)0= 0 here.
WhenRgc = o, K andk’’ have values of zero, and eq 6 then
generates eq 19 (cf. eq 20 of ref 5):

W) (Rge=w) = (1 — )@, + 2u®, — 11+ 31)®@s  (19)
In the Appendix, and in ref 5, it is demonstrated that 0.2,
and thereforé = 0 (cf. eq 22 of ref 5), generating eq 20 (cf. eq
26 of ref 5) forW (Rgc=):

W (Rec=2) = W{HA—Hg(S=1)} + Ho(S=7)  (20)
Equation 20 involves spectroscopic spin states feahid the
H atom. Withl = 0, the VB representations fér — VII and
Il — VI can then be modified as follows, in order that

spectroscopic excited states are generated for the relevant bond
dissociations.

e .
XYRYY - x
11, RC

LR Y =

111, PC

R Y

VII

+

R Y

Vi

+

The resulting promotion ga@ corresponds to th&' = AEst
of eq 15 of ref 1 and represents the energy difference between
the singlet-spin ground state and the triplet-spin excited state
for H,. As was done in ref 1G can be related to the bond
energy for the R'Y bond.

Resonance EnergyB at the Avoided Crossing

The results of the kIVB calculationd? reported in Table 4
of ref 5 show thaiG is approximately related t&B(W* ¢osd —
E(Wcros9 according to

G=HEWY,(Rsc=»)} — E{W (Rgc=)} ~
A E(lp*crosg - E(lpcross)} (21)

in which E(We¢ros9 = E(Prs).

With normalized ¥, and ¥),, we have W, |H/W¥, 0=
Wy, |H|Wy, O= Q at the crossing point = W |H|W, O=
W |H|IIJ|| 0 andS| m = Wy, |1P||| CJWhen the approximation
of eq 21 is invoked, egs 22 and 23 are obtainedBF* ¢rosd
— E(W¢ros9 andB:

E(P* rosd — E(Werosd = —2(K— §, [l Q1 -5 N 2) ~
G/2 (22)

B=E(Wrs) = E(W) crosd = (K= G QL+ § ) ~
_(1 - S| il )G/4 (23)
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In ref 1, B is defined aB = E(Wrs) — E(PLcros9, and a value

of G'/4 has been assigned to it from semiempirical VB theory.
Wee=C, W, 4(1.0,1.193,1.193}

Cy ¥, »(1.0,0.6875,1.0 C, ¥, ,(1.0,1.0,0.6875) (28)

contribute to the following wave functions:

Simplifications to B and G

We can simplify egs 22 and 23 as follows. We have indicated

that, at the conclusion and commencement of the reaction, theWpc=Cy ,1lp||| ,1(1-193’1-1931-0)‘

orthogonality relationships of eq 18 obtain in order that the Cu 2P '2(1.0,6875,1.0)|- Cu ,3‘Pm 13(0.6875,1.0,1.0) (29)

associated wave functions represent spectroscopic states, or

eigenstates, for the reactants and products. At intermediate stage$he numbers in parentheses refer to the exponents that have

along the reaction coordinate, each®§ andW, alone does been used for the a, b, and ¢ AOs. Each of¥hg; and W) ;

not correspond to an eigenstate. But we can still require that s constructed according to eq 2. There are 32yipe canonical

these wave functions be orthogonal, i.&, = 0. This Lewis structures of the typeis-8 of Figure 1 of ref 5, or Table

requirement ensures th&f, and Wy, correlate simply with 1 here, which contribute to th&rc andWpc of egs 28 and 29.

W) (Rec=) andWy; (Rag=0), respectively. We thereby obtain By use of these structures and Roso’s ab initio VB progtam,

egs 24 and 25. variational-best calculations were performed for the transition
state and the H+ H; dissociation products. The energies and

E(W* 059 — E(Werosd = —2K = G/2 (24) bond lengths ar& = —1.618 40 au anRa, = Ryc = 1.839 au
for the transition state, arlel= —1.648 28 au an®R,. = 1.431
B=E(Wo — E(lpRc,crosQ =K=-G/4 (25) au for H+ Ha. The resulting barrier height is 17.4 kcal/mol,

cf. 23.6 kcal/moF, 15.1 kcal/mol (doublé: + p basis)2 and
9.6 kcal/mol (exact}sb.c
Inspection of Table 1 reveals thd ; — Wy 1 is the primary
contributor toWrc — Wpe Twelve canonical Lewis structures
(Table 1) contribute to it. Resonance between these structures
generates a minimum energy ofL.611 85 au withRyp = Ryc
= 1.842 au. WhetRy, = Ry = 1.839 au, as occurs for the 32
structure calculation, the energy-4.611 84 au, cf—1.618 40
au for the 32 structure resonance. However eaclph —
R 2 andll’” 3~ N 3 is dissociative. FoRyy = Ry = 1.839
au, their energies arel.543 58 and-1.490 77 au, respectively.
When Ryy = Ry = 1.839 au, the reactant-complex wave
function, W), ; has a minimum energy of1.589 83 au with
W), 1= 0.31654Db; + 0.15928, + 0.0878%D3; — 0.29221D,
— 0.03678Ps5 + 0.07404b;. When| is set equal tacs/c; =
0.843, as in eq 7 for the increased-valence configuratioft (a
Ib)}(b + Kc)(c + K'b)L, this configuration has a minimum
energy of—1.543 82 au foik = 0.15,k" = 0.30, andu =
—0.0053.
Additional variational parameters can be introduced by use
of a linear combination of increased-valence configurations, such
as

We now deduce aapproximatecondition for orthogonality
of W, andW), atthe avoided crossing, for whiah = k', "
=K', A =1 andv = u in eqs 2-6. The following
approximations will initially be introduced: (a) All two-center
AO overlap integrals S, = Sic and Sy will be omitted from
the canonical structure overlap integrafy, = [@;|P;[] As a
consequence, it can be deduced tBat= 0 except forS;; =
Su~ 2; S~ —1, andS, = S5~ 1. (b) The produck’k” is
set equal to zero. The resulting expression 8y ¥, ,[= 0 is
then given by eq 26.

W, W), = 2u(1 — u) (S + S +
KL = 3u)(Spy + S5 +{(L — w)° + 1} S
= 8u(1 — u) + 4K'I(1 — 3u) — {(1 — w)* + u*}
=0 (26)

When the values df’, |, andu are assumed to be small, eq 27

u~0.1(1- 28" 27)
is obtained as the approximate requirement¥grandW¥, to
be orthogonal. For illustrative purposes here, we shall ap- ¥, ; = {(a+ Ib) (b + Kc)(c + k'b)"}’ +
proximaté? further the value oft to 0.1. When this value qf 1 13l 1 1
is introduced into eq 13, values &f= 0.15, k' = 0.3;, and| C(@+1b) (lb + kc)l(c—i- K b)l} *
= 0.71, are obtained. (The approximations of neglectiig’ C{(a+ kb)y(b+Ic)y(c+k'by}' +
and? can therefore be seen to be reasonable.) Bec#yse 111 IRy Iy
andW, were not required to be orthogonal in ref 5 these values Cf(atk bl) (b+k Cl) (c+ |b)l} +
for k' andk’" differ from those reported in ref 5, namelf, = Cf(a+ Ib)y(b+Kc)y(c+ kb)} +
k' = 0.143. Withu = 0.1 forS,;; =0, andp = +1in eq 11, C.l(a+ IbY(b + K'cY(c + Kby (30
we obtaink' = 0.2, k" = 0.2, andl = 0.55; for W* s s ) ) y3' 0
for which the{}' and{}" groupings represent the spin-pairings
of egs 3 and 4.

With | = 0.843,k' = 0.15, andk” = 0.30, it is calculated

Triple-£ 1s AO Basis Set
Forl = 0 in egs 3 and 4, the charge-transfer structires

and?7 contribute to the reactantlike complex with wave function
W,,. Similarly for A = 0 in egs 5 and 6, the charge-transfer
structures?2 and 8 contribute to the productlike complex with

that the reactant increased-valence energy is lowered 689 83
au when the fived'; 1 configurations anény one of the five
@' 1 configurations are used to construct i ; of eq 30.

wave function®y;; . The singleg 1s AO exponent for the (free)  With anyset of nonequivalent k', andk”’ values, for example,

H~ ions of these structures is 0.6875, which differs substantially | = 0.4, k' = 0.2, andk” = 0.3, the same energy;1.589 83

from the values of 1.0 and 1.193 for the free H-atom and au, is obtained. The variational mixing is transferred from the
(Weinbaumj* H 1s exponents, respectively. To take account polarity parameter§ k', andk” to the coefficients of the five

of each of these exponents in the construction of wave functions®';, ; and the ®'"} ; increased-valence configurations (cf.

for VB structuresll and lll , we have performed further complete MG-CI treatments with orthogonal MOs). Therefore,
calculations, which use the canonical Lewis structures that resonance between the associated increased-valence structures,
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each of which involves three bonding localized MOs (LMOs) W ; = 0.30335%P, + 0.15291b, + 0.11968b; —

is equivalent to the lowest-energy resonance between the Lewis 0.03848D, — 0.07615D, + 0.29911D, (34)
structures that contribute to the increased-valence structures. If

the @', 1 configuration is omitted, the resulting, ; with the for Wy 1 with an energy of-1.581 89 au. With a= 1s, b =
five @', 1 configurations gives an energy 6f1.562 21 au, 1g, — 6_08(2%), c=1s — 0.01(2py), | = 0.843,K = 0.15,
which is equivalent to the best linear combination of the andk’ = 0.30 as previously (for which the 8pAOs were

Pz, 3, s, and ®; Lewis AO configurations that contribute  onitted), thew), ; of eq 35 is also calculated to give an energy
o thed”, 1 of eq 3. of —1.581 89 au:
The same type of result is obtained % ; — Wy 1, with

Wy, 1 given by eq 31 and, » — W, 1 calculated as either eq _ 1 IRy RN Y
32 or 33 in which the numerical coefficients are now those for ¥y ={@+Ibyb+k (i) c+k lb) } .
normalized AO or LMO configuration wave functions. 0.71459(a+ Ib)' (b + Kc)(c+ K'b)}" +

0.02437(a+ Kb)'(b + Ic)(c + K'b)"}' —

0.19747(a+ K'b)(b + Kc)(c + Ib)}' —

0.0218§(a+ Ib)’(b + k'c)’(c + kb)*}' —
0.11879(a+ Ib)'(b + K'c)'(c + k"b)*}' (35)

W, ={(c+Ib)(b+ka)(a+Kk'b)} +
C{(c+ Ib)'(b + Ka)'(a+ k'b)'}" +
C,{(c+ Kb)'(b+ la)(a+ K'b)}' +
CA(c+k'b)(b+ Ka)(a+ Ib)}' +
C(c+Ib)'(b+ Ka)(a+ kb)'} +
C{(c+ Ib)(b+ K'a)(a+ Kk'b)"} (31) Wee= Gy 1¥) 1(18,18,19)rc T
Ci 2V (18,204, 19)rc T C 3W) 3(18,19,2P0)rc T+

(b) To formulate wave functions according to

Wy — W) 1 =0.220720, (r) — Dy (P)} + Cy 4%, A15,2p0y, 200 )rc (36)
0.39834 @, ,(r) — @5 4(p)} + 0.08219P,,(r) —
@g,(p)} — 0.19428 D, 4(r) — Dy, (P)} + Wee=Cy 1 1(15,15,19)pc T
0.3157q D5 ,(r) — D,,(p)} + 0.05987 @, (1) — Pg,(P)} Cii 2 2(15,2p0p,189)pc + Cyy 3Wi 3(2P0518,1%)pc T+
(32) Ci 4% (2P0 200, 18)pc (37)
v, -, ={@+ Ib)l(b + k’c)l(c + k”b)l — which are analogous to eqgs 28 and 29. Theg, (I, 15)rc and
’ 1, 1 s 1 (1sy 1s, 1s)pc sets of exponents are (1.0, 1.193, 1.193) and
(c+1b) (b + ka)(a+ k'b)y}' — 0.0310q(a+ Ib)" x (1.193, 1.193, 1.0), respectively. EachuvZRO exponent is equal
(b+Kc)(c+ K'b)' — (c+ Ib) (b + ka)(a+ k'b)'}"" + to 1.193. However, three-electron configurations, which include
il 1 nd 1 (1s, 2poc) for Wre, (1s, 2pos) for Wee, and (1s, 2pop), (1S,
0'039?1((: +”k ti) ,(b +lay(atkb) ) §a+ k’k')) 1X 1s,, 2poy), and (1s, 2pon, 2pon) for each ofPrc andWec, need
(b+lc)(c+ k'b)}' —0.23949(a+ k"b)"(b + Kc)" x to be added to eqs 36 and 37. For #gc andWpc increased-
(c+Ib)' — (c+ K'b)(b + ka)(a+ Ib)'}' — 0.7212Z (a+ valence configurations, the AOs are=als, b = 1s, or 2pop,

N y X . respectively.
0.12443(a+ Ib)*(b + K'c)(c + K'b)" — (c + Ib) (b +
k,,a)l(a+ k”b)l}' (33) Conclusions
) For any AO basis set, the VB formulation presented in ref 5
For .bOth cases, the calculated ener_gyﬂs&_ill 84_au. .. forradical transfer reactions and in earlier publicatfor(gs in
Eighteen _mcreased-valence conflgura_ltlons with 27 distinct | —[Il <1l ]— IV here) can generate diabatic potential energy
LMOs contribute to thélrc of eq 28. Withl = 0.843,k' = curves via those for the reactantlike and productlike complexes

0.15, andk” = 0.30 as previously, the resulting energy, (.t Figure 2 of ref 5). The formulation provides a compact VB
—1.608 17 au, is the same as that calculated for the best linear

binati fth e X f Tabl representation that indicates succinctly how electronic reorga-
i;’m ination of the 18 component AO configurations (cf. Table 7 ation could occur as the reaction proceeds. It also allows for

the possibility of using orthogonal forms of the wave functions

for the reactantlike and productlike complexes to provide a
simple definition of the resonance energy at the crossing point.
There are two (nonequivalent) ways to include polarization Other developments are possibiebut that presented here

Inclusion of 2p AOs as Polarization Functions

functions such as 2p AOs in the above treatment: should be sufficient to show how extended AO basis sets can
(a) To formulate the a, b, and ¢ AOs as hybrid AOs, such as be incorporated into the— [Il < Il ] — IV VB formulation,

a= 1ls + ka2pos, b = 15, + kp2pop, and c= 1s + k2po, and to make some comparison between the theory of refs 1

with the hybridization parameteis, kp, and k. determined and 5.

variationally at each stage along the reaction coordifaté.e It is noted that the reactantlike compléx involves some

theory is then identical to that which has already been described.productlike character, via the inclusion of the product Lewis
To provide a simple example, we have assumed that, for the structures4 and5 in the equivalent Lewis structure resonance

reactant complex wave functidH, 1, ka= 0, (1s) = 1.0 and scheme. Similarly, the productlike compldk involves some
that the 1s and 2p AO exponents for the b and ¢ AOs are eachreactantlike character via its inclusion of the reactant Lewis
equal to 1.193 (cf. the Rosen calculation fg)) M Variationally structuresl and 2.

best estimates 6f0.08 and—0.01 are obtained fdg, andk. at VB modeling of barriers in the nonidentity hydrogen abstrac-

Rab = Roc = 1.839 au, to give the linear combination tion reactions has been described recently in ref 20. The compact
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VB representatiott’ of | — [Il < 1l ] — IV is also relevant

for these types of reactions. However, at the transition state,
for which the energies for nonequivaldhtandlll are equal,

the variational parameters for the reactant complerust differ
from those for the product compléX .
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Appendix

Although eq 20 fol’|; (Rec=) represents an overalb(Ms)
spin state witl5= Mg = 0.5, it involves mixed spin states for
the Ha—Hg product of H\—Hg + Hc. To obtain a spectroscopic
state (with a definite total spin quantum numb8y, the S =
Ms = 0.5 wave functions foP;, @4, and ®s (cf. ref 2) are
expressed in terms of the spin states of theirtHls compo-
nents. The¥, (Rsc=) is then given by eq Al.

W) (Rgc=) = (1 — u){P4(1,1) — 0.5P,(1,0} +
0.5(5 — 1)®,(0,0) — (1 + 3u)®:(0,0) (Al)

Whenu = 0.2, orthogonality of; (Rsc=00) with W)y (Rgc=c0)
givesl = 0.0 via eq 22 of ref 2. Therefore eq Al reduces to eq
A2,

W) (Rgc=) = (1 — u){ @4(1,1) — 0.504(1,0}}

which corresponds to eq 20 foraHHg(S=1) + Hc, or eq 26
of ref 2.

Whenu = 1.0, the Hh—Hg(S=0) wave function of eq A3 is
obtained from eq A2:

(A2)

W) (Rgc=) = 2{®4(0,0) — 21D5(0,0}  (A3)
Although | in eq A3 can be chosen so th&8{, (Rsc=)
is orthogonal to¥, (Rsc=), eq A3 excludesbg(0,0), which
interacts with each of®4(0,0) and ®5(0,0). Therefore
W), (Rsc=0) represents a nonspectroscofie 0 valence state.

Note Added in Proof

For a symmetrical transition state withmals, b= 2po, and
¢ = 1s, the parameters, «'', and/ are equal to the parameters
—k', =Kk, and—I, respectively.
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